Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities.
نویسندگان
چکیده
The goal of this paper is to state the optimal decay rate for solutions of the nonlinear fast diffusion equation and, in self-similar variables, the optimal convergence rates to Barenblatt self-similar profiles and their generalizations. It relies on the identification of the optimal constants in some related Hardy-Poincaré inequalities and concludes a long series of papers devoted to generalized entropies, functional inequalities, and rates for nonlinear diffusion equations.
منابع مشابه
Entropy-energy Inequalities and Improved Convergence Rates for Nonlinear Parabolic Equations
Abstract. In this paper, we prove new functional inequalities of Poincaré type on the one-dimensional torus S and explore their implications for the long-time asymptotics of periodic solutions of nonlinear singular or degenerate parabolic equations of second and fourth order. We generically prove a global algebraic decay of an entropy functional, faster than exponential for short times, and an ...
متن کاملWeighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods
This paper is the second part of the study. In Part I, self-similar solutions of a weighted fast diffusion equation (WFD) were related to optimal functions in a family of subcritical Caffarelli-Kohn-Nirenberg inequalities (CKN) applied to radially symmetric functions. For these inequalities, the linear instability (symmetry breaking) of the optimal radial solutions relies on the spectral proper...
متن کاملGlobal Positivity Estimates and Harnack Inequalities for the Fast Diffusion Equation
We investigate local and global properties of positive solutions to the fast diffusion equation ut = ∆u m in the range (d− 2)+/d < m < 1, corresponding to general nonnegative initial data. For the Cauchy problem posed in the whole Euclidean space R we prove sharp Local Positivity Estimates (Weak Harnack Inequalities) and Elliptic Harnack inequalities; we use them to derive sharp Global Positivi...
متن کاملA Diffusion Equation with Exponential Nonlinearity Recant Developments
The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...
متن کاملOn Nonlinear Nonlocal Diffusion Equations
This is a study of a class of nonlocal nonlinear diffusion equations (NNDEs). We present several new qualitative results for nonlocal Dirichlet problems. It is shown that solutions with positive initial data remain positive through time, even for nonlinear problems; in addition, we prove that solutions to these equations obey a strong maximum principle. A striking result shows that nonlocal sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 38 شماره
صفحات -
تاریخ انتشار 2010